Explicit Temperature Treatment in Monte Carlo Neutron Tracking Routines — First Results
ثبت نشده
چکیده
This article discusses the preliminary implementation of the new explicit temperature treatment method to the development version Monte Carlo reactor physics code Serpent 2 and presents the first practical results calculated using the method. The explicit temperature treatment method, as introduced in [1], is a stochastic method for taking the effect of thermal motion into account on-the-fly in a Monte Carlo neutron transport calculation. The method is based on explicit treatment of the motion of target nuclei at collision sites and requires cross sections at 0 K temperature only, regardless of the number of temperatures in the problem geometry. The method includes a novel capability of modelling continuous temperature distributions. Test calculations are performed for two test cases, a PWR pin-cell and a HTGR system. The resulting keff and flux spectra are compared to a reference solution calculated using Serpent 1.1.16 with Doppler-broadening rejection correction [2]. The results are in very good agreement with the reference and also the increase in calculation time due to the new method is on acceptable level although not fully insignificant. On the basis of the current study, the explicit treatment method can be considered feasible for practical calculations.
منابع مشابه
Explicit treatment of thermal motion in continuous-energy Monte Carlo tracking routines
This paper introduces a new stochastic method for taking the effect of thermal motion into account on the fly in a Monte Carlo neutron transport calculation. The method is based on explicit treatment of the motion of target nuclei at collision sites and, consequently, requires simply cross sections at a temperature of 0 K regardless of the number of temperatures in the problem geometry. It util...
متن کاملThe study of neutron interactions with soft tissue using Monte Carlo simulation using the source PF
The most important part of neutron therapy treatment (NCT1) is to achieve a beam of neutrons with suitable energy and intensity, as well as the least pollution and damage. In this study, in order to correct the neutron spectrum from D-D fusion and its use in neutron therapy, a set of different materials which are called the Beam Shaping Assembly (BSA) was placed in the direction of energy 2.45 ...
متن کاملDesign and Simulation of Photoneutron Source by MCNPX Monte Carlo Code for Boron Neutron Capture Therapy
Introduction Electron linear accelerator (LINAC) can be used for neutron production in Boron Neutron Capture Therapy (BNCT). BNCT is an external radiotherapeutic method for the treatment of some cancers. In this study, Varian 2300 C/D LINAC was simulated as an electron accelerator-based photoneutron source to provide a suitable neutron flux for BNCT. Materials and Methods Photoneutron sources w...
متن کاملMonte Carlo characterization of photoneutrons in the radiation therapy with high energy photons: a Comparison between simplified and full Monte Carlo models
Background: The characteristics of secondary neutrons in a high energy radiation therapy room were studied using the MCNPX Monte Carlo (MC) code. Materials and Methods: Two MC models including a model with full description of head components and a simplified model used in previous studies were implemented for MC simulations. Results: Results showed 4-53% difference between full and wit...
متن کاملThe influence of neutron contamination on pacemaker in photon beam radiotherapy by LINAC using the Monte Carlo method
In radiation therapy with high-energy photon beams (E > 10 MV) neutrons are generated mainly in LINACs head thorough (γ,n) interactions. These neutrons affect the shielding requirements in radiation therapy rooms. According to the AAPMTG-34 report, photon absorbed dose of 10Gy can cause permanent damage to the pacemaker and the dose of 2Gy can make minor changes in the functioning of the pac...
متن کامل